What is a PHP test?
In a preferential hyperacuity perimetry, or PHP test, the macula, or central area of the retina is scanned with a succession of stimuli, each stimulus consisting of a series of dots arranged along a vertical or horizontal axis. In each stimulus, a small number of dots are misaligned, thereby creating an artificial distortion (bump or wave). The examinee's task is to perceive these artificial distortions and mark their locations on the visual field. When a stimulus is projected on a healthy portion of the retina, the examinee identifies the artificial distortion and is likely to mark a correct location. If the stimulus is projected on a damaged region of the retina, a pathological distortion may be perceived instead of the artificial distortion, especially if the pathological distortion is more prominent than the artificial distortion. The examinee may then mark a location that is distant from the artificial distortion, indicating that a pathological distortion may have been perceived. By manipulating the amplitude of artificial distortions, the amplitude of the pathology in the area of interest can be quantified. At the end of test, comparison of the set of erroneous responses against a normative data base is used to determine if test results are within normal limits.